P09 - Quantum Information Processing with Trapped Ions
Thomas Monz
Abstract:
Abstract:
The long-term goals and visions of our project are to (i) push towards the demonstration of a fully-functional quantum processor beyond 30 qubits; (ii) develop and implement characterization, verification and validation (CVV) routines to certify quantum performance beyond classical capabilities; (iii) implement novel ideas for demonstrating a quantum advantage; and (iv) realize experiments that show-case QC for industrial applications. For the goals outlined above, the first four years will be dedicated to exploring scaling ion-trap quantum computing, CVV beyond a ten-qubit quantum processor, demonstration of a computational quantum speed-up, and the implementation of various quantum algorithms.
PI Thomas Monz on
Quantum Information Processing with Trapped Ions
Team:
Subproject Leader: Thomas Monz
Co-PI: Philipp Schindler
PostDoc: Christian Marciniak, Claire Edmunds
PhD students: Robert Freund, Alex Steiner, Vanya Pogorelov
Admin: Patricia Moser, Claudia Mevenkamp
Publications:
Integrating a fiber cavity into a wheel trap for strong ion–cavity coupling featured Special Collection: Jonathan P. Dowling Memorial Special Issue: The Second Quantum Revolution
M. Teller, V. Messerer, K. Schüppert, Y. Zou, D.A. Fioretto, M. Galli, P.C. Holz, J. Reichel, T.E. Northup
AVS Quantum Sci. 5, 012001 (2023)
Entanglement of Trapped-Ion Qubits Separated by 230 MetersV.
Krutyanskiy, M. Galli, V. Krcmarsky, S. Baier, D. A. Fioretto, Y. Pu, A. Mazloom, P. Sekatski, M. Canteri, M. Teller, J. Schupp, J. Bate, M. Meraner, N. Sangouard, B. P. Lanyon, and T. E. Northup
Phys. Rev. Lett. 130, 050803 (2023)
Reconstructing Complex States of a 20-Qubit Quantum Simulator
Murali K. Kurmapu, V.V. Tiunova, E.S. Tiunov, Martin Ringbauer, Christine Maier, Rainer Blatt, Thomas Monz, Aleksey K. Fedorov, and A.I. Lvovsky
PRX Quantum 4, 040345 (2023)
Strategies for practical advantage of fault-tolerant circuit design in noisy trapped-ion quantum computer
Sascha Heußen, Lukas Postler, Manuel Rispler, Ivan Pogorelov, Christian D. Marciniak, Thomas Monz, Philipp Schindler, Markus Mülle
Phys. Rev. A 107, 042422 (2023)
Practical randomness and privacy amplification
C. Foreman, S. Wright, A. Edgington, M. Berta, F. J. Curchod
Quantum 7, 969 (2023)
Native qudit entanglement in a trapped ion quantum processor
P. Hrmo, B. Wilhelm, L. Gerster, M. W. van Mourik, M. Huber, R. Blatt, P. Schindler, T. Monz, M. Ringbauer
Nature Communications 14, 2242 (2023)
Probing phases of quantum matter with an ion-trap tensor-network quantum eigensolver
M. Meth, V. Kuzmin, R. van Bijnen, L. Postler, R. Stricker, R. Blatt, M. Ringbauer, T. Monz, P. Silvi, P. Schindler
Phys. Rev. X 12, 041035 (2022)
Experimental single-setting quantum state tomography
R. Stricker, M. Meth, L. Postler, C. Edmunds, C. Ferrie, R. Blatt, P. Schindler, T. Monz, R. Kueng, M. Ringbauer
PRX Quantum 3, 040310 (2022)
Characterizing quantum instruments: from non-demolition measurements to quantum error correction
R. Stricker, D. Vodola, A. Erhard, L. Postler, M. Meth, M. Ringbauer, P. Schindler, R. Blatt, M. Müller, T. Monz
PRX Quantum 3, 030318 (2022)
Experimental Bayesian calibration of trapped ion entangling operations
L. Gerster, F. Martínez-García, P. Hrmo, M. van Mourik, B. Wilhelm, D. Vodola, M. Müller, R. Blatt, P. Schindler, T. Monz
PRX Quantum 3, 020350 (2022)
A universal qudit quantum processor with trapped ions
M. Ringbauer, M. Meth, L. Postler, R. Stricker, R. Blatt, P. Schindler, T. Monz
Nature Physics 18, 1053 (2022)
Optimal metrology with programmable quantum sensors
Ch. D. Marciniak, T. Feldker, I. Pogorelov, R. Kaubruegger, D. V. Vasilyev, R. v. Bijnen, P. Schindler, P. Zoller, R. Blatt & T. Monz
Nature 603, 2022: 604-609 (2022)
Demonstration of fault-tolerant universal quantum gate operations
L. Postler, S. Heußen, I. Pogorelov, M. Rispler, T. Feldker, M. Meth, Ch. D. Marciniak, R. Stricker, M. Ringbauer, R. Blatt, P. Schindler, M. Müller & T. Monz
Nature 605, 2022: 675-680 (2022)
Relaxation times do not capture logical qubit dynamics
Pal, A. K., Schindler, P., Erhard, A., Rivas, Á., Martin-Delgado, M. A., Blatt, R., ... & Müller, M.
Quantum 6, 632 (2022)
Interface between Trapped-Ion Qubits and Traveling Photons with Close-to-Optimal Efficiency
J. Schupp, V. Krcmarsky, V. Krutyanskiy, M. Meraner, T.E. Northup, and B.P. Lanyon
PRX Quantum 2, 020331 (2021)
Heating of a Trapped Ion Induced by Dielectric Materials
M. Teller, D.A. Fioretto, P.C. Holz, P. Schindler, V. Messerer, K. Schüppert, Y.Zou, R. Blatt, J. Chiaverini, J. Sage, and T.E. Northup
Phys. Rev. Lett. 126 (2021)
Entangling logical qubits with lattice surgery
A. Erhard, H. Poulsen Nautrup, M. Meth, L. Postler, R. Stricker, M. Stadler, V. Negnevitsky, M. Ringbauer, P. Schindler, H. J. Briegel, R. Blatt, N. Friis, T. Monz
Nature 589, 220-224 (2021)
Cross-verification of independent quantum devices
C. Greganti, T. F. Demarie, M. Ringbauer, J. A. Jones, V. Saggio, I. A. Calafell, L. A. Rozema, A. Erhard, M. Meth, L. Postler, R. Stricker, P. Schindler, R. Blatt, T. Monz, P. Walther, J. F. Fitzsimons
Phys. Rev. X 11, 031049 (2021)
Indistinguishable photons from a trapped-ion quantum network node
M. Meraner, A. Mazloom, V. Krutyanskiy, V. Krcmarsky, J. Schupp, D. A. Fioretto, P. Sekatski, T. E. Northup, N. Sangouard, and B. P. Lanyon
Phys. Rev. A 102, 052614 (2020)
Probing surface charge densities on optical fibers with a trapped ion
F.R. Ong, K. Schüppert, P. Jobez, M. Teller, B. Ames, D.A. Fioretto, K. Friebe, M. Lee, Y. Colombe, R. Blatt
New Journal of Physics, Volume 22 (2020)
Probing surface charge densities on optical fibers with a trapped ion
F. R. Ong, K. Schüpper, P. Jobez, M. Teller, B. Ames, D. A. Fioretto, K. Friebe, M. Lee, Y. Colombe, R. Blatt, T. E. Northup
New J. Phys. 22 063018(2020)
Indistinguishable photons from a trapped-ion quantum network node
M. Meraner, A. Mazloom, V. Krutyanskiy, V. Krcmarsky, J. Schupp, D. Fioretto, P. Sekatski, T. E. Northup, N. Sangouard, B. P. Lanyon
Phys. Rev. A 102, 052614(2020)
Coherent rotations of qubits within a multi-species ion-trap quantum computer
M. W. van Mourik, E. A. Martinez, L. Gerster, P. Hrmo, T. Monz, P. Schindler, R. Blatt
Physical Review A 102, 022611 (2020)
Experimental deterministic correction of qubit loss
R. Stricker, D. Vodola, A. Erhard, L. Postler, M. Meth, M. Ringbauer, P. Schindler, T. Monz, M. Müller, R. Blatt
Nature 585 (2020)
Scalable and Parallel Tweezer Gates for Quantum Computing with Long Ion Strings
T. Olsacher, L. Postler, P. Schindler, T. Monz, P. Zoller, L. M. Sieberer
PRX Quantum 1, 2020
Efficient ion-photon qubit SWAP gate in realistic ion cavity-QED systems without strong coupling
A. Borne, T. E. Northup, R. Blatt, B. Dayan
Optics Express Vol. 28, 8, 11822-11839 (2020)
Characterizing large-scale quantum computers via cycle benchmarking
A. Erhard, J. J. Wallman, L. Postler, M. Meth, R. Stricker, E. A. Martinez, P. Schindler, T. Monz, J. Emerson, R. Blatt
Nature Communications 10, 5347 (2019)
Experimental quantification of spatial correlations in quantum dynamics
L. Postler, Á. Rivas, P. Schindler, A. Erhard, R. Stricker, D. Nigg, T. Monz, R. Blatt, M. Müller
Quantum 2 (2018)
Quantum portfolio value forecasting
C. Sanz-Fernandez, R. Hernandez, Ch. D. Marciniak, I. Pogorelov, T. Monz, F. Benfenati, S. Mugel, R. Orus preprint arXiv:2111.14970
Towards experimental classical verification of quantum computation
R. Stricker, J. Carrasco, M. Ringbauer, L. Postler, M. Meth, C. Edmunds, P. Schindler, R. Blatt, P. Zoller, B. Kraus, T. Monz
preprint arXiv:2203.07395
Analytical and experimental study of center line miscalibrations in Mølmer-Sørensen gates
F. Martínez-García, L. Gerster, D. Vodola, P. Hrmo, T. Monz, P. Schindler, M. Müller
preprint arXiv:2112.05447
Versatile fidelity estimation with confidence
A. Seshadri, M. Ringbauer, R. Blatt, T. Monz, S. Becker
preprint arXiv:2112.07925
Industrially Microfabricated Ion Trap with 1 eV Trap Depth
S. Auchter, C. Axline, C. Decaroli, M. Valentini, L. Purwin, R. Oswald, R. Matt, E. Aschauer, Y. Colombe, P. Holz, T. Monz, R. Blatt, P. Schindler, C. Rössler, J. Home
preprint arXiv:2202.08244