P08 - Quantum Optimization

Wolfgang Lechner


Abstract:

Our research is dedicated to theoretical quantum physics with the aim to solve computationally challenging problems efficiently in near term quantum devices. The group focuses on two paradigms of quantum computing: digital quantum computing and quantum simulation. The goal of digital quantum computing is to build a universal error-corrected scalable quantum computer. The goal of quantum simulation, on the other hand, is to mimic a model Hamiltonian in a controlled experiment. The concept of adiabatic quantum computing is a hybrid of the two. It is a universal form of quantum computing, on the other hand it builds on the quantum simulation paradigm. A promising application of quantum computing in near term devices is to solve optimization problems. As optimization problems are omnipresent in academic research and industry, the impact of improving on current classical optimization algorithms is a highly desirable goal. 

PI Wolfgang Lechner on
Quantum Optimization

Team:

Subproject Leader: Wolfgang Lechner

PhDs: Martin Lanthaler, Maike Schön, Andrea López Incera, Gregor Aigner, Aleksei Konovalov

PostDoc: Glen Bigan Mben

Admins: Nicole Jorda

Publications:

Parity Quantum Optimization: Compiler
Ender, K., ter Hoeven, R., Niehoff, B. E., Drieb-Schön, M., & Lechner, W.
Quantum 7, 950 (2023)

Parity Quantum Optimization: Benchmarks
Fellner, M., Ender, K., ter Hoeven, R., & Lechner, W.
Quantum 7, 952 (2023)

Parity Quantum Optimization: Encoding Constraints
Drieb-Schön, M., Javanmard, Y., Ender, K., & Lechner, W.
Quantum 7, 951 (2023)

CircuitQ: An open-source toolbox for superconducting circuits
Aumann, P., Menke, T., Oliver, W. D., & Lechner, W.
New J. Phys. 24 093012 (2022)

Applications of Universal Parity Quantum Computation
Fellner, M., Messinger, A., Ender, K., & Lechner, W.
Phys. Rev. A 106, 042442 (2022)

Universal Parity Quantum Computing
Fellner, M., Messinger, A., Ender, K., & Lechner, W.
Phys. Rev. Lett. 129, 180503 (2022)

Modular Parity Quantum Approximate Optimization
Ender, K., Messinger, A., Fellner, M., Dlaska, C., & Lechner, W.
PRX Quantum 3, 030304 (2022)

Demonstration and modelling of time-bin entangled photons from a quantum dot in a nanowire
P Aumann, M Prilmüller, F Kappe, L Ostermann, D Dalacu, PJ Poole, W Lechner, H Ritsch, G Weihs
AIP Advances 12, 055115 (2022)

Two-Dimensional Z2 lattice gauge theory on a near-term quantum simulator: Variational quantum optimization, confinement, and topological order
Lumia, L., Torta, P., Mbeng, G. B., Santoro, G. E., Ercolessi, E., Burrello, M., & Wauters, M. M.,
PRX Quantum, 3(2) (2022)

Polynomial scaling enhancement in the ground-state preparation of Ising spin models via counterdiabatic driving
A. Hartmann, G. B. Mbeng, W. Lechner
Physical Review A 105, 022614 (2022)

Quantum optimization via four-body Rydberg gates
Dlaska, C., Ender, K., Mbeng, G. B., Kruckenhauser, A., Lechner, W., & van Bijnen, R.
Physical Review Letters, 128(12), 120503 (2022)

Minimal Constraints in the Parity Formulation of Optimization Problems
Lanthaler, M.; Lechner, W.
New Journal of Physics 23, 083039 (2021)

Two-parameter counter-diabatic driving in quantum annealing
L. Prielinger, A. Hartmann, Y. Yamashiro, K. Nishimura, W. Lechner, H. Nishimori
Physical Review Research 3, 013227 (2021)

Embedding Overhead Scaling of Optimization Problems in Quantum Annealing
M. S. Könz, W. Lechner, H. G. Katzgraber, M. Troyer
PRX Quantum 2, 040322 (2021)

Compact ion-trap quantum computing demonstrator
I. Pogorelov, T. Feldker, Ch. D. Marciniak, L. Postler, G. Jacob, O. Krieglsteiner, V. Podlesnic, M. Meth, V. Negnevitsky, M. Stadler, B. Höfer, C. Wächter, K. Lakhmanskiy, R. Blatt, P. Schindler, and T. Monz
PRX Quantum 2, 020343 (2021)

Qualifying quantum approaches for hard industrial optimization problems. A case study in the field of smart-charging of electric vehicles
C. Dalyac, L. Henriet, E. Jeandel, W. Lechner, S. Perdrix, M. Porcheron, M. Veshchezerova
EPJ Quantum Technology 8, 12 (2021)

Quantum approximate optimization with parallelizable gates
W. Lechner
IEEE Transactions on Quantum Engineering 1, 1-6 (2020)

Perspectives of quantum annealing: Methods and implementations
Hauke, P.; Katzgraber, H. G.; Lechner, W.; Nishimori, H.; Oliver, W.D.
Rep. Prog. Phys. 83, 054401 (2020)

Many-body quantum heat engines with shortcuts to adiabaticity
Hartmann A., Mukherjee V., Niedenzu W., Lechner W.
Phys. Rev. Research 2/2, 023145 (2020)

Quantum expectation-maximization algorithm
Hartmann, A.; Mukherjee, V.; Mbeng, G.B., Niedenzu, W., Lechner, W.
Phys. Rev. A 101/1, 012326 (2020)

Multi-spin counter-diabatic driving in many-body quantum Otto refrigerators
H. Miyahara, K. Aihara, W. Lechner
Quantum 4, (2020)

Quantum phase transition with inhomogeneous driving in the Lechner-Hauke-Zoller model
A. Hartmann, W. Lechner
Phys. Rev. A 100, 032110 (2019)

Rapid counter-diabatic sweeps in lattice gauge adiabatic quantum computing
A. Hartmann, W. Lechner
New J. Phys. 21, 043025 (2019)

A Quantum N-Queens Solver
V. Torggler, P. Aumann, H. Ritsch, W. Lechner
Quantum 3, 149 (2019)

Designing ground states of Hopfield networks for quantum state preparation
C. Dlaska, L. M. Sieberer, W. Lechner
Phys. Rev. A 99, 032342 (2019)

Electron cloud design for Rydberg multi-qubit gates
Khazali, M., & Lechner, W.
preprint arXiv.2111.01581 (2021)

 

For further publications: see here.