P05 - Integrating Superconducting Quantum Circuits

Johannes Fink


Abstract:

Superconducting processors offer fast clock speeds and a promising potential for scalability, but even with state of the art gate fidelities an excessive overhead of physical qubits is required to encode each single logical qubit. Our long-term goal is to lay the scientific foundation of a highly integrated chip-based quantum computer hardware that is ready for both, fast local processing and long-distance quantum communication. The first 4 years will be dedicated to improving single and few qubit properties and to study the interaction and dynamics of medium-scale integrated quantum circuits. In the first part we will investigate new directions to reduce the circuit size without compromising coherence by employing new types of substrates, fabrication technology and circuit designs. In the second part we will investigate the potential of collective multi-qubit states for analog quantum simulation, sensing and quantum annealing. Towards the end of the reporting period we plan to use the developed qubit hardware as a non-classical resource in long-distance fiber optic
quantum networks.

PI Johannes Fink on
Integrating Superconducting Quantum Circuits

Team:

Subproject Leader: Johannes Fink

PhD Student: Riya Sett, Georg Arnold

Admins: Eszter Toth-Adlovits

Publications:

Emergent macroscopic bistability induced by a single superconducting qubit
R. Sett, F. Hassani, D. Phan, S. Barzanjeh, A. Vukics, J. M. Fink
PRX Quantum 5, 010327 (2024)

Selective and sensitive probes for superconductor surface losses
M. Zemlicka, E. Redchenko, M. Peruzzo, F. Hassani, A. Trioni, S. Barzanjeh, J. M. Fink
Phys. Rev. Applied 20, 044054 (2023)

Inductively shunted transmon: A superconducting qubit with flux noise insensitive plasmon states and a protected fluxon decay exceeding 3 hours
Farid Hassani, Matilda Peruzzo, Lucky N. Kapoor, Andrea Trioni, Martin Zemlicka, Johannes M. Fink
Nature Commun. 14, 3968 (2023)

Coherent optical control of a superconducting microwave cavity via electro-optical dynamical back-action
Liu Qiu*, Rishabh Sahu*, William Hease, Georg Arnold, Johannes M. Fink
Nature Commun. 14, 3784 (2023)

Tunable directional photon scattering from a pair of superconducting qubits
Elena S. Redchenko, Alexander V. Poshakinskiy, Riya Sett, Martin Zemlicka, Alexander N. Poddubny, Johannes M. Fink
Nature Commun. 14, 2998 (2023)

Entangling microwaves with light
Rishabh Sahu*, Liu Qiu*, William Hease, Georg Arnold, Yuri Minoguchi, Peter Rabl, and Johannes M. Fink
Science 380, 718 (2023)

Quantum-enabled operation of a microwave-optical interface
Rishabh Sahu, William Hease, Alfredo Rueda, Georg Arnold, Liu Qiu, Johannes Fink
Nature Commun. 13, 1276 (2022)

 Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction
Matilda Peruzzo, Farid Hassani, Gregory Szep, Andrea Trioni, Elena Redchenko, Martin Žemlička, Johannes Fink
PRX Quantum 2, 040341 (2021)

Surpassing the resistance quantum with a geometric superinductor
M. Peruzzo*, A. Trioni*, F. Hassani, M. Zemlicka, J. M. Fink
Phys. Rev. Applied 14, 044055 (2020)

Microwave Quantum Illumination using a Digital Receiver
S. Barzanjeh, S. Pirandola, D. Vitali and J. M. Fink
Science Advances 6 eabb0451 (2020)

Efficient microwave frequency conversion mediated by the vibrational motion of a silicon nitride nanobeam oscillator
J. M. Fink, M. Kalaee, R. Norte, A. Pitanti, O. Painter
Quantum Sci. Technol. 5 034011 (2020)

Converting microwave and telecom photons with a silicon photonic nanomechanical interface
G. Arnold*, M. Wulf*, S. Barzanjeh, E. S. Redchenko, A. Rueda, W. J. Hease, F. Hassani, J. M. Fink
Nature Commun. 11 4460 (2020)

Bidirectional electro-optic wavelength conversion in the quantum ground state
W. Hease*, A. Rueda*, R. Sahu, M. Wulf, G. Arnold, H. G. L. Schwefel, J. M. Fink
PRX Quantum 1, 020315 (2020)

Electro-optic entanglement source for microwave to telecom quantum state transfer
A.R. Rueda Sanchez, W.J. Hease, S. Barzanjeh, J.M. Fink
Npj Quantum Information 5 (2019)

 

All-optical single-shot-readout of a superconducting qubit
Georg Arnold*, Thomas Werner*, Rishabh Sahu, Lucky N. Kapoor, Liu Qiu, and Johannes M. Fink
arXiv:2310.16817

Observation of collapse and revival in a superconducting atomic frequency comb E. S. Redchenko, M. Zens, M. Zemlicka, M. Peruzzo, F. Hassani, H. S. Dhar, D. O. Krimer, S. Rotter, J. M. Fink arXiv:2310.04200

 

 

Other publications:

Stationary Entangled Radiation from Micromechanical Motion
S. Barzanjeh, E. S. Redchenko, M. Peruzzo, M. Wulf, D. P. Lewis, G. Arnold and J. M. Fink.
Nature 570, 480–483 (2019)
[arXiv:1809.05865]

Al transmon qubits on silicon-on-insulator for quantum device integration
A. J. Keller, P. B. Dieterle, M. Fang, B. Berger, J. M. Fink, O. Painter
Applied Physics Letters 111, 042603 (2017)

Observation of the photon-blockade breakdown phase transition
J. M. Fink, A. Dombi, A. Vukics, A. Wallraff, P. Domokos
Physical Review X 7, 011012 (2017)
[arXiv:1607.04892]

Dressed collective qubit states and the Tavis-Cummings model in circuit QED
J. M. Fink, R. Bianchetti, M. Baur, M. Göppl, L. Steffen, S. Filipp, P. J. Leek, A. Blais, A. Wallraff
Physical Review Letters 103, 083601 (2009)
[arXiv:0812.2651]

For further publications: see here.

Open Positions:

PostDoc-Positions
- experience in superconducting circuits
- for further information please check quantumids.com