P12 - Tensor Networks and Quantum Circuits for Quantum Computers

Borivoje Dakic


Tensor networks provide a new paradigm in many body physics by which the entanglement structure of the correlated system can be probed directly. Symmetries, topological phases and the breaking thereof are reflected into the symmetries of the local tensors. Such a tensor network description of a quantum many body system or quantum field theory automatically yields a quantum circuit description by which a quantum computer would be able to simulate such field theories. Conversely, representing entangled states of matter on a quantum computer is tightly linked to the problem of quantum error correction, as it is precisely the nonlocal degrees of freedom which can be exploited to safeguard the qubits. The long-term goals and visions of this project are to develop a unified theory based on tensor networks and quantum circuits for describing entanglement in many body systems and using this structure to build robust fault tolerant quantum computers.

Frank Verstraete on
Tensor Networks and Quantum Circuits for Quantum Computers


Subproject Leader: Borivoje Dakic

Co-PI: Frank Verstraete

PhDs: Miguel Gallego, Sebastian Horvat, Joshua Morris


Sample-Efficient Device-Independent Quantum State Verification and Certification
A. Gočanin, I. Šupić, and B. Dakić
PRX Quantum 3, 010317 (2022)

Interference as an information-theoretic games
S. Horvat and B. Dakić
Quantum 5, 404 (2021)

Coherence Equality and Communication in a Quantum Superposition
F. Del Santo and B. Dakić
Phys. Rev. Lett. 124, 190501 (2020)

Experimental few-copy multipartite entanglement detection
V. Saggio, A. Dimić, C. Greganti, L. A. Rozema, P. Walther, B. Dakić
Nature Physics 15 (2019)

Experimental Two‐Way Communication with One Photon
F. Massa, A. Moqanaki, Ä. Baumeler, F. Del Santo, J. A. Kettlewell, B. Dakić, P. Walther,
Advanced Quantum Technologies (2019).

Quantum enhancement to information speed acquisition
S. Horvat, B. Dakić
New J. Phys. 23 033008, (2021)

Higher-order interference between multiple quantum particles interacting nonlinearly
L. A. Rozema, Z. Zhuo, T. Paterek, B. Dakić
Phys. Rev. A 103, 052204 (2021)

Macroscopically nonlocal quantum correlations
M. Gallego, B. Dakić
Phys. Rev. Lett. 127, 120401 (2021)

Bell's theorem for trajectories
D. Gočanin, A. Dimić, F. Del Santo, B. Dakić
Phys. Rev. A 102, 020201 (2020)

Universal quantum computation via quantum controlled classical operations
S. Horvat, X. G. Gao, B. Dakić
J. Phys. A: Math. Theor. 55 075301 (2022)

Quantum verification with few copies
J. Morris, V. Saggio, A. Gočanin, B. Dakić
Adv. Quantum Technol. 2100118 (2022)

Experimental photonic quantum memristor
M. Spagnolo, J. Morris, S. Piacentini, M. Antesberger, F. Massa, A. Crespi, F. Ceccarelli, R. Osellame, P. Walther
Nature Photonics 16, 318–323 (2022)

Fourier Transform of the Orbital Angular Momentum of a Single Photon
J. Kysela, X. Gao, B. Dakić
Phys. Rev. Applied 14, 034036 (2020)

Accessing inaccessible information via quantum indistinguishability
S. Horvat and B. Dakić
preprint arXiv.2203.16592

Selective Quantum State Tomography
J. Morris, B. Dakić
preprint arXiv.1909.05880

Experimental Higher-Order Interference in a Nonlinear Triple Slit
P. Namdar et al.
preprint arXiv.2112.06965

Verifying Multi-Partite Entanglement with a Few Detection Events
L. A. Rozema, V. Saggio, A. Dimić, C. Greganti, P. Walther, B. Dakić
In Conference on Lasers and Electro-Optics 2019, OSA Technical Digest (Optical Society of America, 2019) paper FM2M.7

Verifying Multi-Particle Entanglement with a Few Detection Events
V. Saggio, A. Dimić, C. Greganti, L. A. Rozema, P. Walther, B. Dakić,
In Quantum Information and Measurement (QIM) V: Quantum Technologies, OSA Technical Digest (Optical Society of America, 2019) paper F5A.7

Comment on "Quantum principle of relativity"
F.D. Santo and S. Horvat

For further publications: see here.